前言

- 非常感谢使用本公司生产的精致型热量积算仪!
- 本手册提供对精致型热量积算仪使用时关于性能指标、安装接线、运行操作、参数设置、故障诊断等方面的方法,在使用精致型热量积算仪之前,敬请仔细阅读本手册,正确掌握使用方法后再进行具体操作,避免由于错误操作造成不必要的损失。
- 在您阅读完后,请妥善保管在便于随时翻阅处,以便操作时参照。

声明

- 本手册内容因功能和性能升级等有修改时, 恕不另行通知。
- 本手册内容严禁全部或部分转载、复制。
- 本公司力保本手册内容正确无误,如您发现有不妥或错误之处,请与我 们联系。

版本

MF33H02I16X

打开包装箱后在您使用之前请确认以下事项。一旦您收到的产品、数量有误 或外观上有物理损坏时,请与我公司或销售网点联系。

精致型热量积算仪

使用说明书

产品合格证

产品合格证

序号	名称	单位	数量	备注
1	精致型热量积算仪	台	1	
2	安装支架 (含螺钉)	根	2	用于盘式安装固定
3	说明书	本	1	
4	产品合格证/保修卡	份	1	
5	数据管理软件(光盘)	张		可选配件
6	RS-232C/485 转换模块	个		可选配件
7	RS-232C 通讯线	根		可选配件

注意事项

- 开箱时如发现仪表因运输而致的破损,请与厂家联系
- 本系列仪表适用于一般工业场合,如有特殊的使用要求请另行设置保护装置
- 为了您和仪表的安全,请勿带电安装。请使用额定电压的供电电源,正确接
 线,妥善接地,接通电源后,请不要触摸仪表后部的接线端子,以防触电
- 仪表请安装在室内,安装位置请保证通风顺畅(以防仪表内部温度过高), 避开风雨和太阳直射,切勿在下列场合中安装:
 - 温度和湿度超过使用条件的场合
 - 有腐蚀性、可燃性或爆炸性气体的场合
 - 有大量粉尘、盐及金属粉末的场合
 - ⊙ 水、油及化学液体易溅射到的场合
 - 有直接振动或冲击的场合
 - 电磁发生源的场合
- 仪表在靠近电源动力线、强电场、强磁场、产生静电、噪声或交流接触器等
 干扰的场合应采取相应的屏蔽措施
- 为避免测量误差,传感器是热电阻时,要使用三根规格相同而且电阻值小于 10Ω的铜导线,否则会造成测量误差
- 为延长仪表的使用寿命,请定期进行保养和维护。请勿自行维修和拆卸仪器。 擦拭仪表时请用干净软布,切勿蘸取酒精、汽油等有机溶剂清扫,可能造成 变色或变形
- 如果仪表有进水、冒烟、异味、异响等情况时,请立即切断供电电源,停止 使用并及时与供货商或我公司取得联系

	日 录	
第1章	概述	1
第2章	技术指标	2
第3章	安装接线	4
3.1 化	义表结构	4
3.2 化	义表尺寸	4
3.3 J	开孔尺寸	5
3.4 化	义表安装	5
3.5 化	义表接线	6
	接线方法	6
Ţ	端子说明	7
1	接线图	8
第4章	基本操作及运行画面	9
4.1 化	义表按键	9
4.2 使	吏用模式	10
4.3 ž	运行画面	11
J	总貌画面	11
	数显画面	12
-	查询画面	14
第5章	参数设置及辅助画面	16
5.1 纟	且态及系统组态	

IV

组态	
系统组态	
5.2 流量组态	
5.3 热量组态	
5.4 供温及回温组态	
5.5 输出组态	
5.6 报警组态	
5.7 通讯及打印组态	
通讯组态	
打印组态	
通讯接线	
5.8 辅助界面	
第6章 故障分析及排除	
第7章 服务指南	
附录一 使用实例	
附录二 寄存器地址	
附录三 定制/附加功能说明	

第1章 概述

■ 概述

精致型热(冷)量积算仪是一个以 ARM 微处理器为基础与各种流量变送器、 传感器配合进行流量测量并配合两只铂热电阻(或经温度变送器)配合完成液 态热载体热量计量或冷媒体冷量计量的仪表。

它针对现场温度、流量等各种信号进行采集、显示、控制、远传、通讯、 打印等处理,构成数字采集系统及控制系统,尤其适合贸易结算和计量管理, 可广泛应用于导热油锅炉、水暖等供热系统及楼宇空调热交换系统,对传热、 传质实现在线计量,从而为企业能源管理、能源消耗计量、技术经济提供依据。

■ 特点

- ⊙ 适用流量计和流体介质范围广泛。
- 同时具备液态热载体热量计量或冷媒体冷量计量功能,一表两用。
- ⊙ 流量单位自动换算,差压式流量计的流量系数自动运算。
- ⊙ 贸易结算功能:可对高/低流量启用协议结算,可对停电启用补足结算。
- ⊙ 应急容错功能:供/回温度信号异常时,使用应急参数值进行补偿运算。
- 调试演算功能:支持查看各变送器/传感器信号原始值;支持查看流量热量计算中的各种中间参数如密度,温差,焓差等。
- 审计记录:停电记录。
- 报警列表:支持记录流量、热(冷)量、供温、回温、差压/频率/体积
 等瞬时量或累积量报警信息。
- 累积报表: 支持累积流量、热(冷)量日报表、月报表及年报表。
- 通讯功能:标准 Modbus RTU 协议,支持 RS485、RS232C 通讯接口。
- ⊙ 变送功能:支持标准电流变送输出,信号来源通道可选。

第2章 技术指标

■ 显示

屏幕: 128*64点阵灰白屏液晶显示器(LCD)

精度: 实时显示: ±0.2% F.S. 追忆精度: ±0.2% F.S.

■ 处理器

采用高性能的ARM Cortex-M3 32位的RISC内核

■ 输入功能

流量通道:模拟量信号:4-20mA、0-10mA等信号;

频率信号:Fr (范围: 0.0-5000.0HZ, 低电平≤1V, 高电平≥5V)

温度通道: 0-10mA、4-20mA、Pt100、Pt1000等信号

注意

● 其它输入信号(如开关量输入(DI))需在订货时注明

■ 输出功能

配电输出:提供1组(F12)12VDC及2组(Q24、T24)24VDC传感器电源,输出电流单路最大30mA,其中流量电流24V配电(Q24)和温度24V配电(T24)共地

变送输出:支持1路标准电流 4-20mA 变送输出(来源通道可选),负载能力 500Ω(最大)

继电器输出:支持2路继电器输出,触点容量 3A@250VAC/3A@30VDC,可 组态上上限、上限、下限、下下限报警

■ 通讯功能

通讯接口:提供 RS232C 和 RS485 两种通讯接口供用户选择,支持 Modbus RTU 协议,波特率----(1200、2400、4800、9600)

■ 供电电源

交流供电电源: 220VAC, 50HZ 交流电源供电;支持 24VDC(18VDC-36VDC) 直流电源供电;支持 12VDC(9VDC-18VDC)直流电源供电

注意

● 直流供电需在订货时注明

■ 误差精度

时钟误差: ±2 秒/天

- 工作环境
 - 环境温度: 0~50℃(避免日光直晒)
 - 环境湿度: 0~85%R.H (无凝结)

(禁止在易燃、腐蚀性环境下工作)

- 海拔高度: <2000 米
- 仪表净重

净重: ≤1.0Kg

注意

- ⊙ 技术指标为本系列仪表通用指标,功能配置请以实物为准。
- ⊙ 技术指标若有与实物仪表不相一致时,请以实物为准。

- 第3章 安装接线
- 3.1 仪表结构

3.2 仪表尺寸

上述图示单位:mm。

3.3 开孔尺寸

当集装表安装时,应参考上图中推荐的仪表间最小间距,以保证必要的散 热及装卸空间,上述图示单位:mm。

3.4 仪表安装

安装方法:

- 步骤 1:将仪表从安装面板(请使用钢板)前方推入安装孔中。其中安装 面板厚度为(1.5~6.5)mm。
- 步骤 2:用仪表所带的安装支架如上图所示安装(仪表左右两侧各安装一 个支架,仪表盘安装支架所用螺丝是 M4 标准螺丝)。
- 步骤 3: 仪表表体安装完毕后,即可进行信号线和电源线的连接。

3.5 仪表接线

■ 接线方法

建议用带绝缘套的 U 型压线端子(电源端子 M3.5 螺钉、信号端子 M3 螺钉)。

为提高仪表的安全性, 接线时请遵守下述警告:

注意

- 为防止触电,请在接线钱确认供给电源已切断。
- 为防止火灾,请使用双重绝缘线(电源线建议使用截面积≥1mm²,绝缘
 600V的导线;继电器输出接线需耐电压性强,截面积≥0.5 mm²的导线)。
- ⊙ 在电源回路中请设置空气开关,将本表与总电源隔开。
- ⊙ 牢固地拧紧端子螺丝。拧紧力矩: 0.5N.m (5kgf.cm)。
- 在接好电源线后应接上电源检查仪表是否正常,在此之前请勿连接信号
 线,待确认仪表能够正常工作之后,断开电源再进行信号线的连接。
- 测量回路与电源回路需分开铺设,测量对象最好不是干扰源,一旦无法 避免,请将测量对象和测量回路绝缘,并将测量对象接地。
- ⊙ 对于静电产生的干扰,使用屏蔽线较好。
- ⊙ 对于电磁感应产生的干扰,将测量回路接线等距离密集绞接较好。
- 如果将输入接线与其他仪表并联,会相互影响测量值。不得已需要并联 时需注意在运行中请不要开关其中一个仪表的电源,这样会对其他仪表 产生不良影响。热电阻原理上不能并联,电流信号原理上不能并联。
- 铂电阻输入时每根引线电阻应小于 10Ω (引线阻值相同)。

■ 端子说明

端子名称	说明
L/+、N/-、 [⊕] 或	L 为交流电源相线端, N 为交流电源零线端, 为接地
为+、-、NC	端,+为直流电源正端,-为直流电源负端 🕀
A+、B-、G	RS485 通讯接口的信号发出端、接收端、通讯地端
R1、R2、R3	继电器输出接口,规格 250VAC/3A@30VDC/3A
F+、F-、F12	频率流量计的信号端、信号地端、12VDC 馈电输入端
AO+、AO-	电流输出的正端、负端
Q+、Q-、Q24	差压流量计的信号端、信号地端、24VDC 馈电输入端
TA1、TB1、TC1、	供温通道模拟量输入端(TA1、TB1、TC1);温度变送
T24	器的信号端(TB1)、信号地端(TC1)、24VDC 馈电输
	入端(T24)
TA2、TB2、TC2、	回温通道模拟量输入端(TA2、TB2、TC2);温度变送
T24	器的信号端(TB2)、信号地端(TC2)、24VDC 馈电输
	入端(T24)
СОМ	RS232C通讯接口/串口打印接口(其中2脚为RXD仪表
	信号接收端,3脚为TXD 仪表信号发送端,5脚为信号
	地端)
LAN	以太网 RJ45 接口

注意

⊙ 严禁带电时触摸接线端子。

■ 接线图

注意

- 工程现场的供电电压须限制在仪表的承受电压范围内。
- 当变送器功耗超过本机馈电负荷能力时请用外部稳压源供电。
- ⊙ 本仪表默认继电器为常开方式出厂,其他方式出厂请在订货时注明。
- ⊙ 请不要带电插拔通讯线缆。
- 本说明给出的为基本接线图,当仪表功能与基本接线图相冲突时,请以实物为准。

第4章 基本操作及运行画面

4.1 仪表按键

■ 键盘功能

- 向上键:向上移动光标(查询、组态画面)、切换选择、增加光标所在数据值等。
- 向下键:向下移动光标(查询、组态画面)、切换选择、减少光标所在数据值等。
- ⊙ 向左键: 向左/前移动光标、切换子/母画面(总貌、数显子/母画面)等。
- ⊙ 向右键: 向右/后移动光标、切换子/母画面(总貌、数显子/母画面)等。
- 确认键:执行光标所在功能或者编辑光标所在数据等。
- ⊙ 退出键:退出当前所在画面。
- 菜单键: 切换主显示画面(总貌、数显、查询画面)、切换光标所在处小数点位数(仪表系数、量程、密度等参数)等。
- ⊙ 退出键+菜单键: 组态复合键,同时按住1秒及以上,进入组态画面。

4.2 使用模式

注意

- 运行画面含总貌画面、数显画面及查询列表画面,运行画面可按【菜单键】进行切换。
- ⊙ 处于总貌画面时可按【向左键】或【向右键】切换到子信息画面。
- ⊙ 处于数显画面时可按【方向键】切换子数显画面。
- 处于查询画面时可按【确认键】进入子列表画面,按【退出键】退回到 查询列表画面。
- 登陆组态参数设置画面需同时按住【退出键】+【菜单键】一秒以上。

4.3 运行画面

■ 总貌画面

本机默认上电为热量总貌画面,当处于热量总貌画面时,按【向左键】或 【向右键】可切换子信息画面,按【确认键】可切换自动/手动巡显功能,按【菜 单键】可切换至数显画面。

- 状态栏:显示当前系统时间和自动/手动巡显标志(其中[○]为自动巡显标志,
 ◆为手动巡显标志)。
- 热(冷)量/流量总貌画面显示瞬时热(冷)量/流量、供温/回温温度及热
 (冷)量/流量总累积值,信号调试画面显示流量通道(差压/频率/体积, 不同流量模型时其相关参数也跟随变化)、供温/回温通道的信号原始数据。
- 当温度输入断线或超出仪表物理测量上限时, 仪表在相应位置显示"----"字样。内部计算采用温度断线设定值。
- 当供温或回温给定时,相关画面中供温或回温显示给定值。

注意

- 总貌画面中显示的流量均为标况状态下的值,显示的密度均为流体工作 状况下的值。
- 执行热(冷)量/流量累积清零后热(冷)量/流量总貌画面中的累积值将 被清零。
- 热(冷)量和流量累积总量固定3位小数显示,溢出后归零。
- 当系统不补偿时相关界面或相关参数自动隐藏不显示。
- 设置[巡显]参数后(系统默认出厂为 0S),热(冷)量总貌、流量总貌和中间参数画面间可进行自动巡显,当巡显时间设置为 0S 时,状态栏中巡显标志固定为手动巡显标志。
- 数显画面

当处于数显画面时,按【方向键】可手动切换子数显画面,按【确认键】 可切换自动/手动巡显功能,按【菜单键】可切换至查询画面。

状态栏:显示通道名称、单位、信号类型/给定(当供温或回温给定时此处显示[给定])。

- 当流量选择不同模型时,上图示中的差压(频率/体积)数显画面中的相关
 参数亦跟随变化,[差压]、[频率]、[体积]分别对应[差压式]、[频率型]、[线
 性]模型。
- 当温度输入断线或超出仪表物理测量上限时,仪表在相应位置显示"----"字样。内部计算采用温度断线设定值。
- 当继电器动作时其状态标志从空心圆变成实心圆,当系统报警时其状态标志从空心方框变成实心方框。
- 棒图:棒图填充区域表示目前数据在总量程中的百分占比(当供温或回温 给定时棒图上下限值为供温或回温通道外部方式下的量程上下限值,可自 有组态量程上下限值以来达到最佳的显示效果)。
- 当供温或回温给定时,相关画面中供温或回温显示给定值。
- Σ: 热(冷)量总累积量或流量总累积量。

注意

- 数显画面中显示的流量均为标况状态下的值。
- 当系统不补偿或未开通变送输出或未开通报警等功能时相关界面和标志 不显示。
- 执行热(冷)量/流量累积清零后热(冷)量/流量数显画面中的累积值将 被清零。
- 设置[巡显] 非 0S 时各数显画面间可按设置时间进行自动巡显切换,当巡显时间设置为 0S 时,状态栏中巡显标志固定为手动巡显标志。

■ 查询画面

当处于查询列表画面时,按【确认键】可进入光标停留处的子列表画面, 按【菜单键】可切换至总貌画面;处于各子列表画面时按【退出键】可退出到 查询列表画面。

◆ 报警列表画面:

- 报警/消报时间:报警列表里每组报警信息中上排为报警时间,下排为消报
 时间,未消报时显示--/-- --:---。
- 报警序号: 最多保存 24 组报警信息, 单屏最多可显示 3 组信息。
- 报警通道:QH为瞬时热量,QF为瞬时流量,ΣH:累积热量报警,ΣF:累
 积流量报警,QC:差压/频率/体积报警,TG:供温报警,TH:回温报警。
- 报警类型: HH 为上上限报警, HI 为上限报警, LO 为下限报警, LL 为下下 限报警。

- 滚动条:表示当前页在总页数中的占比位置。
- ◆ 掉电列表画面:
 - 掉电/上电时间: 掉电列表里每组掉电信息中上排为掉电时间,下排为上电时间。
 - 掉电序号: 最多保存 24 组掉电信息, 单屏最多可显示 2 组信息。
 - 总停次数:表示掉电的总次数。
 - 总停时间: 表示掉电的总累积时间, 参与热/流量停电补足运算, 单位为分。
 - 滚动条:表示当前页在总页数中的占比位置。
- ◆ 累积报表画面:
 - 累积日报表显示仪表系统当前所处月中每天热/流量累积详情及月累积值。
 - 累积月报表显示仪表系统当前所处年中每月热/流量累积详情及年累积值。
 - 累积年报表显示仪表系统当前所处年热/流量累积值及总累积值。
 - 月报表最多显示每年12个月的累积记录,日报表最多显示每月31天的累积
 记录,年报表最多显示1年的累积记录,跨月跨年后系统自动删除上月上年
 己记录的数据,请及时做好报表数据记录。
- ◆ 信息列表画面:
 - 版本:显示当前软件版本。

注意

- 执行清除报警列表、清除掉电列表后相应的列表画面中的数据均被清除。
- 执行累积清零后相应的累积报表画面中的数据均被清除。

第5章 参数设置及辅助画面

5.1 组态及系统组态

密码: 00 00 00*	时间 13-06-18 14:40:03 密码 00 00 00		
系统 流量 热量 供温	巡显 OS 系统维护		
回温 输出 报警 通讯	大气压 101.325 kPa 退出		
组态画面	系统组态		

- 组态
 - 同时按住【退出键】和【菜单键】一秒以上,可进入『组态』入口,按【退 出键】退回到总貌画面,子组态间按【方向键】切换光标。
 - 『组态』初始密码为 00 00 00, 输入正确密码后按【确认键】可进入分级
 菜单,再选择相应的子组态入口进行组态设置, '*' 未消失代表密码错误或
 未进行确认,密码错误则不能进入组态画面。
 - 『组态』采用分级菜单式结构,具有组态登录密码输入、系统组态、流量
 组态、热量组态、供温组态、回温组态、输出组态、报警组态、通讯组态
 等功能。
 - 操作:按【向左键】或【向右键】移动光标,按【确认键】执行光标所在
 功能,按【退出键】快速退出组态画面。

■ 系统组态

处于[组态]画面中移动光标到[系统]入口,按【确认键】进入[系统组态],画面介绍如下:

● 时间设定:设置仪表的系统日期和时间。

- 用户密码:设置用户管理组态权限密码。
- 巡显间隔:用于总貌、数显等画面中各子母画面间巡显切换,初始值为10S,
 0S代表不巡显,按【确认键】可进入『辅助界面』进行参数快速更改操作。
- 当地大气压强:当地环境压强,用户自定义组态,单位 kPa 固定,初始默 认值为 101.325KPa (即 0.101325MPa)。
- 系统维护: [清除掉电列表]或[清除报警列表]或[恢复默认设置]等系统维护 功能,系统维护一旦确认操作将清除相关数据或恢复出厂设置,过程不可 逆,请谨慎操作。
- 操作:按【向左键】或【向右键】移动光标,按【向上键】或【向下键】
 切换选择或调整数值,按【确认键】执行光标所在功能或编辑光标所在数据,按【退出键】快速退出系统组态。

注意

- 用户密码是进入组态修改参数的唯一密码,丢失后无法进入组态修改参数,用户在购买仪表后应尽快修改密码,并妥善保存,若不幸丢失请及时与供货商或我公司取得联系。
- 恢复出厂设置将初始化所有组态信息并清除仪表中的所有存储数据,包括累积报表数据、掉电列表信息、报警列表信息等,请谨慎操作。

5.2 流量组态

◆ 模型

- [差压式]模型适用于差压式流量计:各类标准、非标准节流件、V锥、弯管、 均速管(xx 巴)、测速管、探针等。当光标在[差压式]设置框按【确认键】 进入[差压明细]设置开方类型:
 - 本机开方:差压变送器未经过开方,需要仪表对差压信号进行开方时, 选择此设定。

● 差变开方: 差压变送器的差压信号已经过开方时,选择此设定。

- [频率型]模型适用于各类定值频率信号、脉冲信号流量计:涡街、涡轮流量 计等。当光标处于[频率型]设置框按【确认键】进入[频率明细]设置需计频 率值或计脉冲值。
- [线性]模型适用于线性信号流量计:电流输出型涡街、电磁、旋进、超声、
 靶式、浮子、热式质量、科氏力质量流量计等。

- ◆ 质量流量运算公式(Q 为质量流量)
 - 差压式流量计: Q=K×√ΔP×ρ
 K: 仪表系数 ΔP: 输入的差压值 ρ: 介质密度
 - 频率型流量计(K系数单位为 1/m³(次每立方米)):
 Q=3600×I_f×p/K
 式 5.2
 - $K: 仪表系数 I_f: 涡街频率 <math>\rho:$ 介质密度
 - 线性流量计: Q=K×ρ×ΔP式 5.3
 K: 仪表系数 ΔP: 线性信号(体积值) ρ: 介质密度
- ◆ 差压/频率/体积组态
- 当模型选为[差压式]时,可进入差压组态设置差压变送器信号类型、工程单位、信号切除、量程上下限等。
- 当模型选为[频率型]时,可进入频率组态设置切除频率值。
- 当模型选为[线性]时,可进入体积组态设置线性信号类型、线性量程上下限、
 线性信号工程单位等。
- 小信号切除(频率直接切数值,其余信号均切量程百分比):
 当测量值<(量程上限值-量程下限值)×小信号百切除百分比值+量程下
 限值时,测量值显示为量程下限值。
- ◆ 流量 K 系数/K 系数单位/K 系数自动运算

当模型选为[差压式]时,流量仪表系数运算公式为:
 K=Q_{max}/<sub>√ΔP_{max}×ρ
 Q_{max}:最大质量流量,ΔP_{max}:最大差压值,ρ:工作密度
 [差压式]模型时,K系数也可选择自动运算【必须先设置好介质补偿类型、
 当地大气压强、标况温度、模型明细及差压组态等相关参数】,光标移动到
</sub>

[自动]按【确认键】进入并根据流量计设计参数规格设置好相应的参数【最 大流量单位可选,设计温度、设计压力按差压流量计设计参数进行设置】, 正确设置完参数后移动光标至[更新]按钮处按【确认键】后即可自动更新 K 系数。自动运算 K 系数的小数点位数需在『流量组态』中[系数]处按【菜 单键】切换更改。

- 当模型选为[频率型]时,本仪表系数K的默认单位为 L/m³,当流量计的系数单位为 L/m³时,本仪表系数值同流量计的平均系数;当流量计的系数单位为 L/L 时,则本仪表K系数=流量计平均系数*1000。
- 当模型选为[线性]时,介质不补偿时,流量系数K设为1,体积组态中体积 上限设为线性信号上限值所对应的体积流量值,体积下限设为0【若流量 计输出为质量流量或仪表运算得到质量流量则介质密度与流量/体积单位 均参与运算】。介质补偿时,密度与单位均参与运算,此时流量系数K应当 依据线性流量计质量流量运算公式求的。

◆ 流量单位

m³/h, m³/min, m³/s, L/h, L/min, L/s, t/h, t/min, t/s, kg/h, kg/min, kg/s, km³/h, Nm³/h, kNm³/h。单位参与运算。

◆ 量程

用户自定义流量量程范围,可自由组态,最大支持 99999。修改量程范围 数值时按【菜单键】可以修改小数点位数(最多支持 3 位,即 99.999), 按【确认键】可进入辅助画面进行参数更改操作。

◆ 介质组态

从流量常用运算公式可以看出流体的流量与流体的密度有正比或开方正比 关系,为了准确测量流体的流量,必须对流体的密度进行补偿,而大多数流

体密度随工况的压力和温度的变化而变化,故对流体密度补偿即可转换成对 流体进行温度和压力补偿。根据不同的流体介质,介质补偿方式分为:不补 偿、水、一般液体、导热油【水、一般液体、导热油介质在『**热量组态**』中 详细介绍】。

● 不补偿

当系统不带补偿时, [介质]组态中只能选择[不补偿],此时还需在介质组态里设置流体的工况密度 p₀。选择其他几种补偿方式时,此密度默认为固定值 1.000 Kg / m³。

◆ 流量累积组态

- 流量累积倍率:累积流量=上次流量累积值+累积倍率×瞬时流量。
- 流量累积初值:设定流量累积初值。执行流量累积[清零]功能后,使用该 值开始累积。
- 流量累积清零:清除以前所有的累积数据,包括总貌画面中的累积值、
 列表查询中的日累积、月累积、年累积报表。
- ◆ 流量贸易组态
 - 停电补足: 仪表断电后,重新上电时仪表自动补足停电期间损失的流量总量,停电期间补足的累积流量=停电补足设定值×停电时间长度。
 - 协议系数:协议计量时的计算系数。
 - 协议上限:当瞬时流量>协议上限值时,累积流量=上次累积值+协议系数×(瞬时流量-协议上限值)+协议上限值。
 - 协议下限:当瞬时流量<协议下限值,累积流量=上次累积值+协议下限 值。

5.3 热量组态

◆ 热量类型

热量、冷量可选。

◆ 热量单位

设定瞬时热量单位,kJ/h、MJ/h、GJ/h、kCal/h、MCal/h、GCal/h、W、kW、 MW、GW等,单位参与运算。

◆ 热量量程

设定瞬时热能量程,上位机显示、曲线显示、变送输出等使用该量程参数, 最大支持 99999,3 位小数点位(即 99.999)。

◆ 传感器位置

根据传感器安装位置设置。安装在供温管道上时,设置为[供温],此时密度 按照供温管道流体密度计算;安装在回温管道上时,设置为[回温],此时密 度按照回温管道流体密度计算。 ◆ **介质组态【**续**『流量组态**』中[介质组态]】

- 水
 - 模型

当选择[水]介质时,本仪表系统有两种计算模型可供选择:

▶ 温差方式

热量瞬时值=质量流量 x (供温-回温) xC式 5.5 其中 C 为水的比热容,单位 kJ/kg℃

▶ 焓值方式

热量瞬时值=K1x质量流量 x 焓值 1-K2x 质量流量 x 焓值 2 ...式 5.6 其中焓值 1 和焓值 2 分别根据供温和回温温度查表得出,热焓表如下 表 1:

温度	热水热焓值	温度	热水热焓值
C	KJ/kg	Ĉ	KJ/kg
50	209.26	130	546.3
55	230.17	135	567.7
60	251.09	140	589.1
65	272.02	145	610.6
70	292.97	150	632.2
75	313.94	155	653.8
80	334.92	160	675.5
85	335.92	165	697.3
90	376.94	170	719.1
95	397.99	175	741.1
100	419.06	180	763.1
105	440.17	185	785.3
110	461.32	190	807.5
115	482.50	195	829.9
120	503.7	200	852.4
125	525.0		

- 一般液体
 - 密度

设定一般液体的密度值,固定密度值补偿,适用于密度不变或变化不大的场合使用。

⊙ 比热容

设定一般液体比热容,计算热量时使用。

● 导热油

补偿运算时根据温度查找计算相应密度和比热值。

◆ 热量累积组态

- 热量累积倍率:累积热量=上次热量累积值+累积倍率×瞬时热量。
- 热量累积初值:设定热量累积初值。执行热量累积[清零]功能后,使用该值开始累积。
- 热量累积清零:清除以前所有的累积数据,包括总貌画面中的累积值、
 列表查询中的日累积、月累积、年累积报表。

◆ 热量贸易组态

停电补足: 仪表断电后,重新上电时仪表自动补足停电期间损失的热量总量,停电期间补足的累积热量=停电补足设定值×停电时间长度。

◆ 方式

当供温/回温补偿为外部传感器输入时,方式选择[外补],当由内部给定时, 需在[给定值]处设置给定供温/回温值,方式通过【向上键】或【向下键】来 选择。

注意

- 当供温/回温断线时,系统自动调用已设给定值【非零值】为断线补偿值,若已设给定值为零,则系统自动默认为断线前最后一次采集值为断线补偿值。
- [给定]方式下的单位不可更改,若需更改单位需在[外补]输入方式下更改 单位。

♦ 类型

输入信号类型,设定信号类型时需和一次仪表或检测元件的信号相一致。

◆ 调整

允许用户调整显示值的偏差值,显示值=测量值+调整值,一般情况下,应 将调整值设置为**0**。

◆ 单位

温度工程单位暂只支持℃,可按用户需求定制增加。

滤波时间的设置有助于提高信号的平滑程度,其范围为 0-99 秒,滤波时间 越长信号越平滑但响应越慢。

显示值= 上次测量值×滤波时间常数+本次测量值 滤波时间常数+1

◆ 切除

当测量值<(量程上限值一量程下限值)×小信号百切除百分比值+量程下限值时,测量值显示为量程下限值。

◆ 量程

用户自定义温度量程范围,可自由组态。修改量程范围数值时按【菜单键】 可以修改小数点位数,按【确认键】可进入辅助画面进行参数更改操作。

5.5 输出组态

输出组态

输出组态

♦ 类型

选择变送输出信号类型。

◆ 作用

在默认不更改变送输出范围(量程)时,AO在正作用下,变送范围上限对 应变送输出电流上限,变送范围下限对应变送输出电流下限;AO在反作用 下,变送范围上限对应变送输出电流下限,变送范围下限对应变送输出电流 上限。

◆ 变送范围【量程】

- 变送范围下限: 变送电流下限对应的来源通道采样测量值;
- 变送范围上限:变送电流上限对应的来源通道采样测量值;
 变送范围上下限可自由组态,变送电流计算公式如下:
 输出电流= <u>来源通道采样测量值 变送范围下限</u> × (电流上限-电流下限) +电流下限

◆ 信号来源

设定变送输出信号来源通道,可选:流量、热量、供温、回温、差压/频率/ 体积、无。无信号来源时自动隐藏变送范围量程。

5.6 报警组态

报警组	瞬时热量 累积热量 瞬时流量	供温 回温 差压	HH: HI: LO: LL:	850.0 435.0 46.0 -99.9	触点: 触点: 触点: 触占:	无 01 无 无	累利报警	识流量 警上限: 点:	9000.000 01
态	累积流量	退出	回差:	1.0%	卅玉/示・	退出			退出

报警组态-瞬时值类

报警组态-累积量类

本系列仪表含有2大类报警方式,其中瞬时流量、瞬时热量、供温、回温、 差压/频率/体积报警属于瞬时值上下限类报警,累积流量、累积热量报警属于累 积量上限类报警。

◆ 瞬时值上下限类

报警组态

- 报警阀值:HH、HI、LO、LL分别为上上限、上限、下限、下下限报警, 其后数值为相应的报警阀值,实际数据在超过相应限值与回差的和或差时, 才会产生或消除报警信号。
- 报警触点:继电器编号,如触点 01 代表 01 号继电器。当信号值超出报警 设定值时,与该触点号对应的继电器就会动作,触点闭合。若选择"无", 表示无论信号是否超限,继电器都不动作,但在报警列表中仍有报警记录。
- 报警回差:报警回差是为了防止仪表在报警点附近多次的重复报警,例如 设置的量程范围为 0~100,高报警点为 80,低报警点为 20,设置报警回 差是 5.0%,则当发生了高报警以后,仪表在测量值/运算值小于 80-100*5%=75时,才撤销此次报警,同理,当发生了低报警以后,仪表 在测量值/运算值大于 20+100*5%=25时,才撤销此次报警。

◆ 累积量上限类

报警上限阀值及报警触点功能同瞬时值上下限类。流量或热量累积量上限阀 值小数点位数均固定为3位。

5.7 通讯及打印组态 方式 PC机 地址 001 方式 打印机 地址 001 定 定时 打开 停止位 2 位 校验 奇 时 间隔 1 Min 波特率 19200 波特率 1200 打 印 正在打印 退出 退出

通讯组态-PC机

通讯组态-打印机

打印组态-定时打印

■ 通讯组态

仪表支持与上位机的通讯操作,实现对仪表的实时监控等。

- 联机方式:含PC机和打印机两种方式,进入打印组态须先把联机方式设为 打印机方可起效。
- 联机地址:通讯联机地址是在仪表组成网络时用以区别的,是仪表在网络中的标识。上位机软件以此来访问仪表;同一个通讯网络中本机地址可在001~255之间设置,不可重复。
- 波特率:通讯方式为[打印机]方式时波特率不可更改,[PC 机]方式时波特率可选(1200、4800、9600)。
- 校验方式:无校验/奇校验/偶校验,默认奇校验,[打印机]方式时不可更改。
- 停止位: 2 位/1 位, 默认 2 位, [打印机]方式时不可更改。

■ 打印组态

通过设置[间隔]参数可以调整打印间隔,仪表每到达打印间隔时间时,自动 启动一次打印,打印功能为定制功能,只有订购了此项功能才开放相关功能。

注意

- ⊙ 打印组态需在[打印机]通讯方式状态下方可有效【客户需配置打印功能】。
- 如打印机未通电或脱机、离线时,执行打印功能仪表不响应。此时用户应检查打印机电源,状态指示灯,看各状态是否正确、打印纸安装是否到位。如还不能正常打印请检查打印机设置(波特率、数据格式、串并)

口设置等)。

- 通讯接线
 - RS-485 连接方式

通讯线需采用屏蔽双绞线(通讯长度勿超过1000米),其一端通过 RS-232/485转换模块接到计算机的串行通信口,另一端接到仪表的485通 讯端子,连接方式如下图示。

● RS-232C 连接方式

用户只需将所配备的 RS-232C 通讯线的一端接于仪表 RS-232C 的接口, 另一端与便携机(或 PDA)的串行口相连,便可实现 RS-232C 通讯连接,通 讯线请采用屏蔽双绞线制作,通讯线长度不能超过 10 米。

仪表侧RS232C通讯接口

计算机侧RS232C通讯接口

辅助界面

辅助界面主要用于报警/量程上下限设置、K系数值等多位数参数调整,进入辅助界面可快速地调节多位数数值,一旦设置的数值超出可设置范围时,系统会提示超出参数可设范围,此时按上下键或者左右键即可重新对参数进行设置,按键操作请参考 4.1-仪表按键。

第6章 故障分析及排除

本热量积算仪采用了先进的生产工艺,出厂前进行了严格的测试,大大提高了仪表的可靠性。常见的故障一般是操作或参数设置不当引起的。若发现无法处理的故障,请记录故障现象并及时通知当地代理商或者和我们联系。 下表是热量积算仪在日常应用中的几个常见故障:

故障现象	原因分析	处理措施
仪表通电不工作	1》电源线接触不良 2》电源开关未闭合	检查电源
信号显示与实际 不符	 1》组态中信号参数设定有误 2》接线错误 3》传感器未正常工作 	 1》检查组态设置 2》检查信号线 3》检查传感器
流量累积显示与 实际不符(接线 正确且传感器正 常工作情况下)	 1》当地大气压强设置错误 2》流体介质设置错误 3》仪表系数设置错误 4》量程小数点设置错误 5》单位设置错误 6》其他参数设置错误 	正确设置
报警输出不正常	1》报警极限设置错误 2》报警点被其它通道共享	1》重新设定极限值 2》取消其它报警点
配电输出遇到问 题	 1》传感器与仪表接线错误 2》多个变送器供电超过本仪表标配的配电(特别是带显示表头的流量计功耗较大) 	1》正确接线 2》使用外部供电或返厂定制最大 负载
通讯不上	1》通讯电缆线没接好 2》通讯参数设置错误 3》通讯串口设置错误	 1》正确连接通讯线 2》积算仪和 PC 机通讯参数设置 相一致 3》设置正确的通讯 COM 口(确 认未被其他程序占用)
变送输出遇到问 题	1》变送输出不来 2》变送输出比例不协调	 1》检查信号来源是否已开通或 变送输出接线是否正确 2》设置正确的来源量程或调节 输出量程

第7章 服务指南

尊敬的用户:您好!感谢您选择了本系仪表。本公司将以优质的服务答谢 您对我公司的信任。初次使用本系仪表,首先核对产品的实际配置与仪表配置 单是否一致,随机资料、配件等装箱物品是否齐全。如有异议请先与我们联系。

■ 注意事项

- 读随机资料:请认真阅读随机资料和保修原则,并完整收存。
- 在购机后,妥善保管好购机发票。

保修原则:

■ 维修周期

自收到产品之日起五个工作日。

- 维修费用
 - 本系列精致型热量积算仪免费保修期为壹年(产品质量问题)。
 - 保修期自用户购买之日起计算,以用户的购买发票(注明产品型号、主机 序列号)或复印件为凭证。若无法提供发票者,则依我公司出品之日起计 算。
 - 保修期内,由于客户使用不当而损坏的产品,或客户已开启产品合格封条, 需收一定费用。产品修复后,可再免费保修半年。

■ 客户须知

- 请务必将产品寄回,并附带产品故障说明,帮助工程师尽快修复。
- 请准确填写电话/传真号码,通讯地址及联系人,以便维修品返还。
- 若您希望工程师去现场进行维修,则须负担由此产生的费用。
- 公司一般以快件方式送回(不附保险),若需以其他方运输,请在表内注明, 并支付相关费用。

附录一 使用实例

- 例:用标准孔板测热水热量
- 已知:差压传感器:两线制 4-20mA 差压变送器,需仪表开方,量程 0.00~
 40.00KPa,工作温度 20.0℃,工作压力 0.20MPa(表压),操作密度为 998.3Kg/m³,大气压 0.1MPa,刻度流量为 0~12m³/h
 温度传感器:Pt1000
- 设置:系统组态中:`大气压'一栏设置为`100.000KPa'

流量组态中: '模型'一栏设置为'差压式'

`单位'一栏设置为`m³/h'

`系数 K'一栏设置为`59.949' 【自动运算得到】

`量程'一栏设置为'0.00~12.00'

差压组态中: `类型'一栏设置为`4~20mA'

`量程'一栏设置为`0.00~40.00'

`单位'默认,其余参数用户自定义

- 热量组态中: 用户自定义
- 介质组态中: `介质'一栏设置为'水', 其余用户自定义
- 供温组态中: `方式'一栏设置为'外补'

`类型'一栏设置为`Pt1000'

`量程'一栏设置为`0.0~300.0'

`单位'默认,其余参数用户自定义

回温组态中: `方式'一栏设置为'外补'

`类型'一栏设置为`Pt1000'

`量程'一栏设置为`0.0~300.0'

`单位'默认,其余参数用户自定义

K系数自动运算参数设置:

在流量组态中[自动]按钮处按【确认键】进入自动运算界面,依次填入设计流量 12m³/h,设计温度 20.0℃,设计压力 0.20MPa(表压),设计密度 998.3Kg/m³后更新系数即可得 K=59.949。

附录二 寄存器地址

本仪表采用 RS485 或 RS232 串行通讯,标准 ModBus RTU 通讯协议, CRC 校验, 被动传输方式。

通讯数据及寄存器地址如下表:(3号命令)

参数	类型	地址	说明
年	Int (整型)	1	0~99
月	Int (整型)	2	1~12
日	Int (整型)	3	1~31
时	Int (整型)	4	0~59
分	Int (整型)	5	0~59
秒	Int (整型)	6	0~59
温度瞬时值	Float(浮点)	7~8	
压力瞬时值	Float(浮点)	9~10	
流量瞬时值	Float(浮点)	13~14	
密度	Float(浮点)	15~16	
差压/频率/体积	Float(浮点)	17~18	
流量总累积量	Float(浮点)	19~20	

附录三 定制/附加功能说明